Ramsey Theory

Ramsey Theory PDF
Author: Ronald L. Graham
Publisher: John Wiley & Sons
Category : Mathematics
Languages : en
Pages : 208
View: 5062

Get Book

Book Description:
Praise for the First Edition "Anyone interested in getting an introduction to Ramsey theorywill find this illuminating..." --MAA Reviews Covering all the major concepts, proofs, and theorems, theSecond Edition of Ramsey Theory is the ultimate guideto understanding every aspect of Shelah's proof, as well asthe original proof of van der Waerden. The book offers a historicalperspective of Ramsey's fundamental paper from 1930 andErdos' and Szekeres' article from 1935, while placingthe various theorems in the context of T. S. Motzkin'sthought on the subject of "Complete Disorder isImpossible." Ramsey Theory, Second Edition includes new and excitingcoverage of Graph Ramsey Theory and Euclidean Ramsey Theory andalso relates Ramsey Theory to other areas in discrete mathematics.In addition, the book features the unprovability results of Parisand Harrington and the methods from topological dynamics pioneeredby Furstenburg. Featuring worked proofs and outside applications, RamseyTheory, Second Edition addresses: * Ramsey and density theorems on both broad and meticulousscales * Extentions and implications of van der Waerden's Theorem,the Hales-Jewett Theorem, Roth's Theorem, Rado'sTheorem, Szemeredi's Theorem, and the Shelah Proof * Regular homogeneous and nonhomogeneous systems andequations * Special cases and broader interdisciplinary applications ofRamsey Theory principles An invaluable reference for professional mathematicians workingin discrete mathematics, combinatorics, and algorithms, RamseyTheory, Second Edition is the definitive work on thesubject.


Ramsey Theory

Ramsey Theory PDF
Author: Alexander Soifer
Publisher: Springer Science & Business Media
Category : Mathematics
Languages : en
Pages : 190
View: 7712

Get Book

Book Description:
This book explores the theory’s history, recent developments, and some promising future directions through invited surveys written by prominent researchers in the field. The first three surveys provide historical background on the subject; the last three address Euclidean Ramsey theory and related coloring problems. In addition, open problems posed throughout the volume and in the concluding open problem chapter will appeal to graduate students and mathematicians alike.


Rudiments Of Ramsey Theory

Rudiments of Ramsey Theory PDF
Author: Ron Graham
Publisher: American Mathematical Soc.
Category : Combinatorial analysis
Languages : en
Pages : 82
View: 7643

Get Book

Book Description:
In every sufficiently large structure which has been partitioned there will always be some well-behaved structure in one of the parts. This takes many forms. For example, colorings of the integers by finitely many colors must have long monochromatic arithmetic progressions (van der Waerden's theorem); and colorings of the edges of large graphs must have monochromatic subgraphs of a specified type (Ramsey's theorem). This book explores many of the basic results and variations of this theory. Since the first edition of this book there have been many advances in this field. In the second edition the authors update the exposition to reflect the current state of the art. They also include many pointers to modern results. A co-publication of the AMS and CBMS.


Ramsey Theory On The Integers

Ramsey Theory on the Integers PDF
Author: Bruce M. Landman
Publisher: American Mathematical Soc.
Category : Mathematics
Languages : en
Pages : 384
View: 628

Get Book

Book Description:
Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems. For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics are: rainbow Ramsey theory, an "inequality" version of Schur's theorem, monochromatic solutions of recurrence relations, Ramsey results involving both sums and products, monochromatic sets avoiding certain differences, Ramsey properties for polynomial progressions, generalizations of the Erdős-Ginzberg-Ziv theorem, and the number of arithmetic progressions under arbitrary colorings. Many new results and proofs have been added, most of which were not known when the first edition was published. Furthermore, the book's tables, exercises, lists of open research problems, and bibliography have all been significantly updated. This innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subject. This breakthrough book will engage students, teachers, and researchers alike.


Ramsey Theory

Ramsey Theory PDF
Author: Xiaodong Xu
Publisher: Walter de Gruyter GmbH & Co KG
Category : Mathematics
Languages : en
Pages : 190
View: 223

Get Book

Book Description:
Key problems and conjectures have played an important role in promoting the development of Ramsey theory, a field where great progress has been made during the past two decades, with some old problems solved and many new problems proposed. The present book will be helpful to readers who wish to learn about interesting problems in Ramsey theory, to see how they are interconnected, and then to study them in depth. This book is the first problem book of such scope in Ramsey theory. Many unsolved problems, conjectures and related partial results in Ramsey theory are presented, in areas such as extremal graph theory, additive number theory, discrete geometry, functional analysis, algorithm design, and in other areas. Most presented problems are easy to understand, but they may be difficult to solve. They can be appreciated on many levels and by a wide readership, ranging from undergraduate students majoring in mathematics to research mathematicians. This collection is an essential reference for mathematicians working in combinatorics and number theory, as well as for computer scientists studying algorithms. Contents Some definitions and notations Ramsey theory Bi-color diagonal classical Ramsey numbers Paley graphs and lower bounds for R(k, k) Bi-color off-diagonal classical Ramsey numbers Multicolor classical Ramsey numbers Generalized Ramsey numbers Folkman numbers The Erdős–Hajnal conjecture Other Ramsey-type problems in graph theory On van der Waerden numbers and Szemeredi’s theorem More problems of Ramsey type in additive number theory Sidon–Ramsey numbers Games in Ramsey theory Local Ramsey theory Set-coloring Ramsey theory Other problems and conjectures


An Introduction To Ramsey Theory Fast Functions Infinity And Metamathematics

An Introduction to Ramsey Theory  Fast Functions  Infinity  and Metamathematics PDF
Author: Matthew Katz
Publisher: American Mathematical Soc.
Category : Combinatorial analysis
Languages : en
Pages : 207
View: 1027

Get Book

Book Description:
This book takes the reader on a journey through Ramsey theory, from graph theory and combinatorics to set theory to logic and metamathematics. Written in an informal style with few requisites, it develops two basic principles of Ramsey theory: many combinatorial properties persist under partitions, but to witness this persistence, one has to start with very large objects. The interplay between those two principles not only produces beautiful theorems but also touches the very foundations of mathematics. In the course of this book, the reader will learn about both aspects. Among the topics explored are Ramsey's theorem for graphs and hypergraphs, van der Waerden's theorem on arithmetic progressions, infinite ordinals and cardinals, fast growing functions, logic and provability, Gödel incompleteness, and the Paris-Harrington theorem. Quoting from the book, “There seems to be a murky abyss lurking at the bottom of mathematics. While in many ways we cannot hope to reach solid ground, mathematicians have built impressive ladders that let us explore the depths of this abyss and marvel at the limits and at the power of mathematical reasoning at the same time. Ramsey theory is one of those ladders.”


Mathematics Of Ramsey Theory

Mathematics of Ramsey Theory PDF
Author: Jaroslav Nesetril
Publisher: Springer Science & Business Media
Category : Mathematics
Languages : en
Pages : 269
View: 5447

Get Book

Book Description:
One of the important areas of contemporary combinatorics is Ramsey theory. Ramsey theory is basically the study of structure preserved under partitions. The general philosophy is reflected by its interdisciplinary character. The ideas of Ramsey theory are shared by logicians, set theorists and combinatorists, and have been successfully applied in other branches of mathematics. The whole subject is quickly developing and has some new and unexpected applications in areas as remote as functional analysis and theoretical computer science. This book is a homogeneous collection of research and survey articles by leading specialists. It surveys recent activity in this diverse subject and brings the reader up to the boundary of present knowledge. It covers virtually all main approaches to the subject and suggests various problems for individual research.


Ramsey Theory For Discrete Structures

Ramsey Theory for Discrete Structures PDF
Author: Hans Jürgen Prömel
Publisher: Springer Science & Business Media
Category : Mathematics
Languages : en
Pages : 232
View: 3504

Get Book

Book Description:
This monograph covers some of the most important developments in Ramsey theory from its beginnings in the early 20th century via its many breakthroughs to recent important developments in the early 21st century. The book first presents a detailed discussion of the roots of Ramsey theory before offering a thorough discussion of the role of parameter sets. It presents several examples of structures that can be interpreted in terms of parameter sets and features the most fundamental Ramsey-type results for parameter sets: Hales-Jewett's theorem and Graham-Rothschild1s Ramsey theorem as well as their canonical versions and several applications. Next, the book steps back to the most basic structure, to sets. It reviews classic results as well as recent progress on Ramsey numbers and the asymptotic behavior of classical Ramsey functions. In addition, it presents product versions of Ramsey's theorem, a combinatorial proof of the incompleteness of Peano arithmetic, provides a digression to discrepancy theory and examines extensions of Ramsey's theorem to larger cardinals. The next part of the book features an in-depth treatment of the Ramsey problem for graphs and hypergraphs. It gives an account on the existence of sparse and restricted Ramsey theorem's using sophisticated constructions as well as probabilistic methods. Among others it contains a proof of the induced Graham-Rothschild theorem and the random Ramsey theorem. The book closes with a chapter on one of the recent highlights of Ramsey theory: a combinatorial proof of the density Hales-Jewett theorem. This book provides graduate students as well as advanced researchers with a solid introduction and reference to the field.


Rudiments Of Ramsey Theory

Rudiments of Ramsey Theory PDF
Author: Ronald L. Graham
Publisher: American Mathematical Soc.
Category : Mathematics
Languages : en
Pages : 65
View: 267

Get Book

Book Description:
It is no exaggeration to say that over the past several decades there has been a veritable explosion of activity in the general field of combinatorics. Ramsey theory, in particular, has shown remarkable growth. This book gives a picture of the state of the art of Ramsey theory at the time of Graham's CBMS lectures. In keeping with the style of the lectures, the exposition is informal. However, complete proofs are given for most of the basic results presented. In addition, many useful results may be found in the exercises and problems. Loosely speaking, Ramsey theory is the branch of combinatorics that deals with structures that are preserved under partitions. Typically, one looks at the following kind of question: If a particular structure (e.g., algebraic, combinatorial or geometric) is arbitrarily partitioned into finitely many classes, what kinds of substructures must always remain intact in at least one of the classes? At the time of these lectures, a number of spectacular advances had been made in the field of Ramsey theory. These include: the work of Szemeredi and Furstenberg settling the venerable conjecture of Erdos and Turan, the Nesetril-Rodl theorems on induced Ramsey properties, the results of Paris and Harrington on ``large'' Ramsey numbers and undecidability in first-order Peano arithmetic, Deuber's solution to the old partition regularity conjecture of Rado, Hindman's surprising generalization of Schur's theorem, and the resolution of Rota's conjecture on Ramsey's theorem for vector spaces by Graham, Leeb and Rothschild. It has also become apparent that the ideas and techniques of Ramsey theory span a rather broad range of mathematical areas, interacting in essential ways with parts of set theory, graph theory, combinatorial number theory, probability theory, analysis and even theoretical computer science. These lecture notes lay out the foundation on which much of this work is based. Relatively little specialized mathematical background is required for this book. It should be accessible to upper division students.


Variations In Ramsey Theory

Variations in Ramsey Theory PDF
Author: Drake Olejniczak
Publisher:
Category : Combinatorial analysis
Languages : en
Pages : 89
View: 7535

Get Book

Book Description:
The Ramsey number R(F,H) of two graphs F and H is the smallest positive integer n for which every red-blue coloring of the (edges of a) complete graph of order n results in a graph isomorphic to F all of whose edges are colored red (a red F) or a blue H. Beineke and Schwenk extended this concept to a bipartite version of Ramsey numbers, namely the bipartite Ramsey number BR(F,H) of two bipartite graphs F and H is the smallest positive integer r such that every red-blue coloring of the r-regular complete bipartite graph results in either a red F or a blue H. Chartrand extended this further to a multipartite version. Bialostocki and Voxman introduced the rainbow Ramsey number RR(G) of a graph G as the smallest positive integer n such that if every edge of the complete graph of order n is colored from any number of colors, then either a monochromatic G (all edges of G colored the same) or a rainbow G (no two edges of G colored the same) results. Eroh extended this concept from one graph to two graphs. These concepts are generalized even further in this work. We present results and open questions concerning several new variations of Ramsey numbers as well as their connections with some well-known concepts in chromatic graph theory.