Hidden Markov Models In Finance

Hidden Markov Models in Finance PDF
Author: Rogemar S. Mamon
Publisher: Springer
Category : Business & Economics
Languages : en
Pages : 261
View: 3153

Get Book

Book Description:
Since the groundbreaking research of Harry Markowitz into the application of operations research to the optimization of investment portfolios, finance has been one of the most important areas of application of operations research. The use of hidden Markov models (HMMs) has become one of the hottest areas of research for such applications to finance. This handbook offers systemic applications of different methodologies that have been used for decision making solutions to the financial problems of global markets. As the follow-up to the authors’ Hidden Markov Models in Finance (2007), this offers the latest research developments and applications of HMMs to finance and other related fields. Amongst the fields of quantitative finance and actuarial science that will be covered are: interest rate theory, fixed-income instruments, currency market, annuity and insurance policies with option-embedded features, investment strategies, commodity markets, energy, high-frequency trading, credit risk, numerical algorithms, financial econometrics and operational risk. Hidden Markov Models in Finance: Further Developments and Applications, Volume II presents recent applications and case studies in finance and showcases the formulation of emerging potential applications of new research over the book’s 11 chapters. This will benefit not only researchers in financial modeling, but also others in fields such as engineering, the physical sciences and social sciences. Ultimately the handbook should prove to be a valuable resource to dynamic researchers interested in taking full advantage of the power and versatility of HMMs in accurately and efficiently capturing many of the processes in the financial market.


Estimation Of Hidden Markov Models And Their Applications In Finance

Estimation of Hidden Markov Models and Their Applications in Finance PDF
Author: Anton Tenyakov
Publisher:
Category :
Languages : en
Pages : 348
View: 3289

Get Book

Book Description:
Movements of financial variables exhibit extreme fluctuations during periods of economic crisis and times of market uncertainty. They are also affected by institutional policies and intervention of regulatory authorities. These structural changes driving prices and other economic indicators can be captured reasonably by models featuring regime-switching capabilities. Hidden Markov models (HMM) modulating the model parameters to incorporate such regime-switching dynamics have been put forward in recent years, but many of them could still be further improved. In this research, we aim to address some of the inadequacies of previous regime-switching models in terms of their capacity to provide better forecasts and efficiency in estimating parameters. New models are developed, and their corresponding filtering results are obtained and tested on financial data sets. The contributions of this research work include the following: (i) Recursive filtering algorithms are constructed for a regime-switching financial model consistent with no-arbitrage pricing. An application to the filtering and forecasting of futures prices under a multivariate set-up is presented. (ii) The modelling of risk due to market and funding liquidity is considered by capturing the joint dynamics of three time series (Treasury-Eurodollar spread, VIX and S\ & P 500 spread-derived metric), which mirror liquidity levels in the financial markets. HMM filters under a multi-regime mean- reverting model are established. (iii) Kalman filtering techniques and the change of reference probability-based filtering methods are integrated to obtain hybrid algorithms. A pairs trading investment strategy is supported by the combined power of both HMM and Kalman filters. It is shown that an investor is able to benefit from the proposed interplay of the two filtering methods. (iv) A zero-delay HMM is devised for the evolution of multivariate foreign exchange rate data under a high-frequency trading environment. Recursive filters for quantities that are functions of a Markov chain are derived, which in turn provide optimal parameter estimates. (v) An algorithm is designed for the efficient calculation of the joint probability function for the occupation time in a Markov-modulated model for asset returns under a general number of economic regimes. The algorithm is constructed with accessible implementation and practical considerations in mind.


Hidden Markov Models

Hidden Markov Models PDF
Author: Ramaprasad Bhar
Publisher: Springer Science & Business Media
Category : Business & Economics
Languages : en
Pages : 162
View: 3046

Get Book

Book Description:
Markov chains have increasingly become useful way of capturing stochastic nature of many economic and financial variables. Although the hidden Markov processes have been widely employed for some time in many engineering applications e.g. speech recognition, its effectiveness has now been recognized in areas of social science research as well. The main aim of Hidden Markov Models: Applications to Financial Economics is to make such techniques available to more researchers in financial economics. As such we only cover the necessary theoretical aspects in each chapter while focusing on real life applications using contemporary data mainly from OECD group of countries. The underlying assumption here is that the researchers in financial economics would be familiar with such application although empirical techniques would be more traditional econometrics. Keeping the application level in a more familiar level, we focus on the methodology based on hidden Markov processes. This will, we believe, help the reader to develop more in-depth understanding of the modeling issues thereby benefiting their future research.


Inference In Hidden Markov Models

Inference in Hidden Markov Models PDF
Author: Olivier Cappé
Publisher: Springer Science & Business Media
Category : Mathematics
Languages : en
Pages : 653
View: 1829

Get Book

Book Description:
This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.


State Space Models

State Space Models PDF
Author: Yong Zeng
Publisher: Springer Science & Business Media
Category : Business & Economics
Languages : en
Pages : 347
View: 1694

Get Book

Book Description:
State-space models as an important mathematical tool has been widely used in many different fields. This edited collection explores recent theoretical developments of the models and their applications in economics and finance. The book includes nonlinear and non-Gaussian time series models, regime-switching and hidden Markov models, continuous- or discrete-time state processes, and models of equally-spaced or irregularly-spaced (discrete or continuous) observations. The contributed chapters are divided into four parts. The first part is on Particle Filtering and Parameter Learning in Nonlinear State-Space Models. The second part focuses on the application of Linear State-Space Models in Macroeconomics and Finance. The third part deals with Hidden Markov Models, Regime Switching and Mathematical Finance and the fourth part is on Nonlinear State-Space Models for High Frequency Financial Data. The book will appeal to graduate students and researchers studying state-space modeling in economics, statistics, and mathematics, as well as to finance professionals.


Hidden Markov Models

Hidden Markov Models PDF
Author: Horst Bunke
Publisher: World Scientific
Category : Computers
Languages : en
Pages : 244
View: 2738

Get Book

Book Description:
Hidden Markov models (HMMs) originally emerged in the domain of speech recognition. In recent years, they have attracted growing interest in the area of computer vision as well. This book is a collection of articles on new developments in the theory of HMMs and their application in computer vision. It addresses topics such as handwriting recognition, shape recognition, face and gesture recognition, tracking, and image database retrieval. This book is also published as a special issue of the International Journal of Pattern Recognition and Artificial Intelligence (February 2001). Contents: Introduction: A Simple Complex in Artificial Intelligence and Machine Learning (B H Juang)An Introduction to Hidden Markov Models and Bayesian Networks (Z Chahramani)Multi-Lingual Machine Printed OCR (P Natarajan et al.)Using a Statistical Language Model to Improve the Performance of an HMM-Based Cursive Handwriting Recognition System (U-V Marti & H Bunke)A 2-D HMM Method for Offline Handwritten Character Recognition (H-S Park et al.)Data-Driven Design of HMM Topology for Online Handwriting Recognition (J J Lee et al.)Hidden Markov Models for Modeling and Recognizing Gesture Under Variation (A D Wilson & A F Bobick)Sentence Lipreading Using Hidden Markov Model with Integrated Grammar (K Yu et al.)Tracking and Surveillance in Wide-Area Spatial Environments Using the Abstract Hidden Markov Model (H H Bui et al.)Shape Tracking and Production Using Hidden Markov Models (T Caelli et al.)An Integrated Approach to Shape and Color-Based Image Retrieval of Rotated Objects Using Hidden Markov Models (S Müller et al.) Readership: Graduate students of computer science, electrical engineering and related fields, as well as researchers at academic and industrial institutions. Keywords:Hidden Markov Models;Gesture Recognitoin;Bayesian Networks;Optical Character Recognition;Handwriting Character Recognition;Cartography;Shape Extraction;Image Feature Extraction.


Hidden Markov Models For Time Series

Hidden Markov Models for Time Series PDF
Author: Walter Zucchini
Publisher: CRC Press
Category : Mathematics
Languages : en
Pages : 288
View: 5672

Get Book

Book Description:
Reveals How HMMs Can Be Used as General-Purpose Time Series Models Implements all methods in R Hidden Markov Models for Time Series: An Introduction Using R applies hidden Markov models (HMMs) to a wide range of time series types, from continuous-valued, circular, and multivariate series to binary data, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out computations for parameter estimation, model selection and checking, decoding, and forecasting. Illustrates the methodology in action After presenting the simple Poisson HMM, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference. Through examples and applications, the authors describe how to extend and generalize the basic model so it can be applied in a rich variety of situations. They also provide R code for some of the examples, enabling the use of the codes in similar applications. Effectively interpret data using HMMs This book illustrates the wonderful flexibility of HMMs as general-purpose models for time series data. It provides a broad understanding of the models and their uses.


Markov Models For Pattern Recognition

Markov Models for Pattern Recognition PDF
Author: Gernot A. Fink
Publisher: Springer Science & Business Media
Category : Computers
Languages : en
Pages : 276
View: 6237

Get Book

Book Description:
This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.


Applications Of State Space Models In Finance

Applications of State Space Models in Finance PDF
Author: Sascha Mergner
Publisher: Universitätsverlag Göttingen
Category :
Languages : en
Pages : 202
View: 1204

Get Book

Book Description:
State space models play a key role in the estimation of time-varying sensitivities in financial markets. The objective of this book is to analyze the relative merits of modern time series techniques, such as Markov regime switching and the Kalman filter, to model structural changes in the context of widely used concepts in finance.The presented material will be useful for financial economists and practitioners who are interested in taking time-variation in the relationship between financial assets and key economic factors explicitly into account. The empirical part illustrates the application of the various methods under consideration. As a distinctive feature, it includes a comprehensive analysis of the ability of time-varying coefficient models to estimate and predict the conditional nature of systematic risks for European industry portfolios.


Quantitative Analysis In Financial Markets

Quantitative Analysis in Financial Markets PDF
Author: Marco Avellaneda
Publisher: World Scientific
Category : Business & Economics
Languages : en
Pages : 380
View: 3525

Get Book

Book Description:
This book contains lectures delivered at the celebrated Seminar in Mathematical Finance at the Courant Institute. The lecturers and presenters of papers are prominent researchers and practitioners in the field of quantitative financial modeling. Most are faculty members at leading universities or Wall Street practitioners. The lectures deal with the emerging science of pricing and hedging derivative securities and, more generally, managing financial risk. Specific articles concern topics such as option theory, dynamic hedging, interest-rate modeling, portfolio theory, price forecasting using statistical methods, etc. Contents:Estimation and Data-Driven Models:Transition Densities for Interest Rate and Other Nonlinear Diffusions (Y Aït-Sahalia)Hidden Markov Experts (A Weigend & S-M Shi)When is Time Continuous? (A Lo et al.)Asset Prices are Brownian Motion: Only in Business Time (H Geman et al.)Hedging Under Stochastic Volatility (K Ronnie Sircar)Model Calibration and Volatility Smile:Determining Volatility Surfaces and Option Values from an Implied Volatility Smile (P Carr & D Madan)Reconstructing the Unknown Local Volatility Function (T Coleman et al.)Building a Consistent Pricing Model from Observed Option Prices (J-P Laurent & D Leisen)Weighted Monte Carlo: A New Technique for Calibrating Asset-Pricing Models (M Avellaneda et al.)Pricing and Risk Management:One- and Multi-Factor Valuation of Mortgages: Computational Problems and Shortcuts (A Levin)Simulating Bermudan Interest-Rate Derivatives (P Carr & G Yang)How to Use Self-Similarities to Discover Similarities of Path-Dependent Options (A Lipton)Monte Carlo Within a Day (J Cárdenas et al.)Decomposition and Search Techniques in Disjunctive Programs for Portfolio Selection (K Wyatt) Readership: Students and researchers in economics, finance and applied mathematics. Keywords: